UDOT Weather Operations' Wildfire and Debris Flow Response

Jeff Williams Cody Oppermann

Western States Rural Transportation Technology Implementers Forum | Yreka, CA | June 14, 2023

UDOT Weather Operations Where We're At

Central Maintenance

Traffic Management Division

UDOT Weather Operations How We're Organized

oad forecast Tue 06:00 - 18:00

data footbecals E are 00000 and a construction of the source of the sour nt will pass through the area, with precipitation starting to fail within 30 miles of the frontal sage. Winds will calar down behind the front. Precipitation will initially start out as rain before sitioning to snow around 1500. Because of this surface contentaments in out advised. Snow then look to continue through the period. Expecting 1-2" of road snow through 1800 TUE.

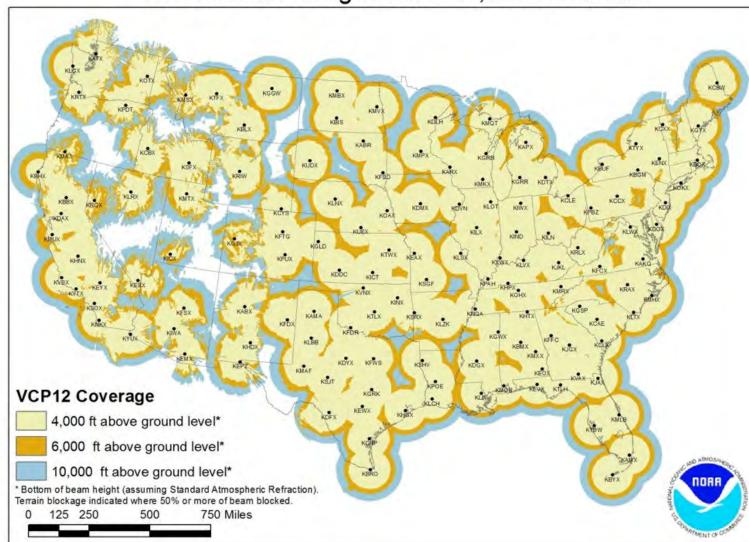
coad forecast Tue Night 18:00 - 06:00 now koks to continue through 2200 TUE before becoming more showery in nature. Snow covers will then look to end by 00/0100 WED. Expecting an addition 1-2" of road snow through his time. By 0200 WED, there looks to be a threat of a band of Lake Effect developing near the Trocele County line. Any Lake Effect band that does develop will look to bring an addition 2-4* road snow from 0200-0600 WED. The Lake Effect band does not look to get further W than MP

Time Period	Where	Temp	Dir	Wind	Gust	Sky
Tue	Grassy Shed (4,700')	HI 35	SW	30-40		Cloudy
Tue Night	Grassy Shed (4,700')	Lo 17	NW	20-30		Cloudy
Tue	Burmester (4,200')	Hi 36	S	30-40		Cloudy
Tue Night	Burmester (4,200')	Lo 18	N	20-30		Cloudy

GROUP COMPAN

Seeley Fire, 2012

Seeley Fire, 2012 Background


- June 26 July 18, 2012
- Lightning caused
- 20 canyons intersect SR-31
- Burned slopes rise up to 2,500' vertically above SR-31
 SR-31 AADT < 300

Radar Coverage

NEXRAD Coverage Below 10,000 Feet AGL

6

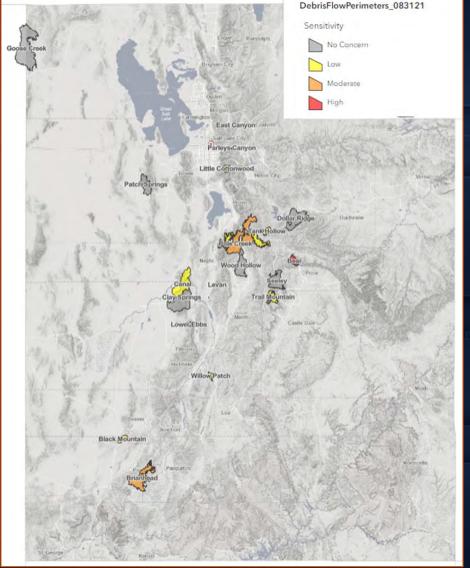
Seeley Fire, 2012 Debris Flow Event Snapshot

- July 17 Huntington Forecast: Thunderstorms will develop once again...
- July 18
 - 1:47 pm RWIS rainfall alert
 - 1:49 pm UDOT Weather Group alerts UDOT personnel
 - "Heavy rain and thunderstorms developing over Seeley Burn scar once again... ~0.20" rainfall in 10 minutes, this has been enough to produce flash flooding and mudslides/debris flows the last few days, so expect additional impacts today."
 - 1:58 pm RWIS rainfall alert
 - 1:59 pm RWIS rainfall alert
 - 2:04 pm RWIS rainfall alert
 - 2:04 pm National Weather Service issues Flash Flood Warning
 - 2:41 pm National Weather Service reissues Flash Flood Warnings
 - 3:51 pm Region 4 alerted TOC about mudslide/road closure
 - 3:54 pm TOC posts on Twitter SR-31 mudslide/closure

Seeley Fire, 2012 Sample Feedback

Huntington Shed Supervisor – Mike Stuart

 "Really appreciates the Weather Desk's help, justifies all of the work we are doing."


• "How long before the next storm? We will not be working at the mouths of the canyons until it is over".

 "Debris has come over the road again. It almost wiped out a contractor. Road is closed. It occurred roughly the time one of the forecasters called."

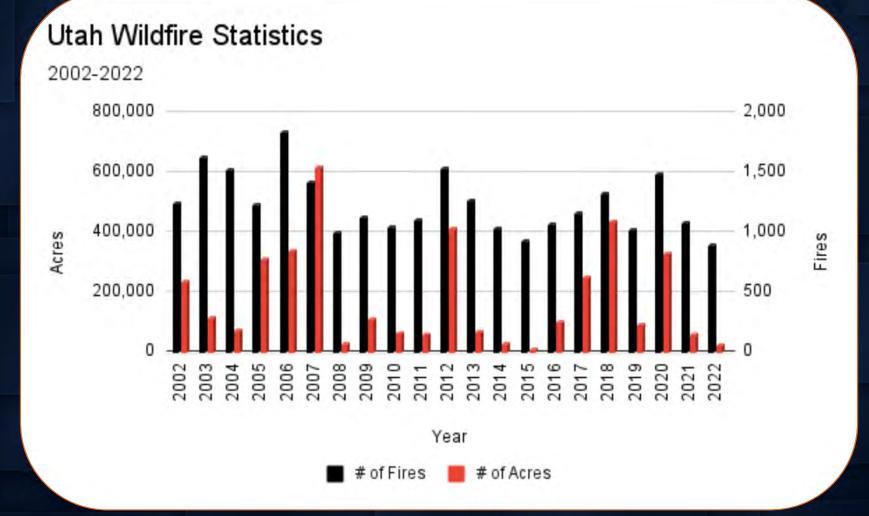
 "Thanks for the call. It helps me justify overtime at the end of the week. There is not much drainage left. Anything will come over the road."

Utah Burn Scars

 19 burn scars have produced debris flows that impacted UDOT roads since 2012

- Multiple road closures
- Fatalities due to blowing dust and debris flows on the highway
- Mitigation efforts have a large positive impact

 14 burn scars are currently being monitored for potential debris flows



Utah Burn Scars Log

1			UDOT Burn Scar Alerti	ng - Working D	Document	
Burn Scar Name ⇒	Impacted Route =	UDOT Shed =	Alert Contacts =	Alert Criteria Ranfall Rate	Burn Scar Date =	Notes/History/Nearby RWIS
Bear	US-6; MM 226-227	Colton	Shed - Tony Cook (435-650-9689); Area Sup - Dan Allred (435-820-4434)	0,1"/10 minutes	June 2021	UTTP4; UTPR2. 200' of mud and small rocks/debris flow MM226-227 from both Bear/Crandall Canyons (8/1/2021).
William	I-15; MM 240-245	Santaquin	Shed - Gary Steele (801-376-8624); Area Sup - Chad Hansen (801-404-8873)	0.166"/10 minutes	September 2020	UTRKY
Parleys	EB I-80; MM 137-138	Parleys	Shed - Roger Frantz (801-910-2340); Area Sup - Cooper Crystal (801-910-2532)	0.166"/10 minutes	August 2021	UTQRY; UT3
Pole Creek/Bald Mtn	US-89 mp 301.5 to 312 Most sensitive area is near 307.2 and 310-312 and US-6 @ mp183.7 to 183.8.	Spanish Fork	Shed - Troy Johnson (801-602-2798); Area Sup - Chad Hansen (801-404-8873)	0.166"/10 minutes	September 2018	Burn scar east of US-89 is more sensitive than west of US-89. Debris flow 4/26.
Brian Head	SR-143/City of Parowan	Parowan	Shed - Dave Burton (435-592-3720); Area Sup - Rick Debban (801-910-2110)	0.166"/10 minutes	June 2017	Debris flow 4/27/19, MP 4-15 closed. BHCU1; UTTP5.
East Canyon	SR-66; MM2-4	Morgan	Shed - Bryan Woolstenholme (435-640-4470); Area Sup - Rick Pro (801-791-3573)	0.166"/10 minutes	June 2021	
Trail Mtn	SR-31	Huntington	Shed - Jeremy Larsen (435-749-0725); Area Sup - Dan Allred (435-820-4434)	0.2"/10 minutes	June 2018	Minor debris flow 7/12/22.
3 Creeks	SR-153	Beaver	Shed - Tom Smith (435-421-1315); Area Sup - Keith Meinhardt (435-979-6355)	0.2"/10 minutes	September 2020	S-Turns at MP 17; NOT ON MAP. UTPKL.
Tank Hollow	US-6	Spanish Fork	Shed - Troy Johnson (801-602-2798); Area Sup - Chad Hansen (801-404-8873)	0.2"/10 minutes	September 2017	
Coal Hollow	US-6	Spanish Fork	Shed - Troy Johnson (801-602-2798); Area Sup - Chad Hansen (801-404-8873)	0.2"/10 minutes	August 2018	Dairy Fork Creek is likely the greatest threat. Mill Fork Creek is also a threat. Debris flow occurred 8/11/22, but didn't reach US-6.

Utah Wildfires

Before the Fire – **Detecting New Fires**

UTAH WILDFIRE INFO

CURRENT ACTIVE FIRES AND FUELS WORK

STATEWIDE FIRE RESTRICTIONS

InciWeb

Information on wildfire incidents all over Utah. To report a fire, call 9-1-1 Utah 🥝 utahfireinfo.gov 🖾 Joined September 2009

During The Fire – Weather Operations

• Monitor fire's progress/area

UTAH WILDFIRE INFO

CURRENT ACTIVE

FIRES AND

FUELS WORK

STATEWIDE FIRE RESTRICTIONS

FIRE PREVENT & ONS PREPARE REPORT A WILDFIRE

 Forecast any impacts to traffic/infrastructure (low visibility, nearroad flames, falling rocks, etc.)

Down

Region: Region 2 Discussion Edited by: Chris Hovanic on 10/18/2013 8:11 AM Quiet and dry weather continues through 1800 SAT with no significant road weather concerns expected. Winds are relatively light through the period, with a few high clouds streaming through the region. Temperatures will remain very close to seasonal normals Extended Forecast Dry weather will continue through the weekend and likely lasts through all of next week as very quiet high pressure takes control of Utah. No road weather concerns are anticipated. Winds will continue to remain light for the foreseeable future, with temperatures remaining very pleasant and fall-like -Road Forecast for 2422 Grantsville Fri Night Edited by: Scott Patterson on 10/17/2013 9:36 PM 18:00 -06:00 Dry. No significant road weather impacts anticipated Sat Edited by: Chris Hovanic on 10/18/2013 8:11 AM 06:00 Dry. No new road weather concerns expected Time Period Where Temp F Dir Wind mph Gust mph Sky 18:00 - 06:00 Grassy Shed (4,700') Lo 37 SE 0-10 Clear 06:00 - 18:00 Grassy Shed (4,700') Hi 55 W 0-10 Mostly Clea rn Night 18:00 - 06:00 Burmester (4,200') Lo 35 S 0-10 Mostly Clear 06:00 - 18:00 Burmester (4,200') Hi 59 S 0-10 Mostly Clea

During The Fire – Incident Response

Procedure: Wildfire Response Created: 2021-04-23 Version: 1

Introduction:

Wildfires are a common occurrence in Utah during the warm and dry summer months. Occasionally, these wildfires impact roadways managed by UDOT to varying degrees. This document provides guidelines for handling different types and sizes of wildfires that affect state-maintained routes. In general, staff should be following standard Incident <u>Evaluation</u> and <u>Escalation</u> procedures, but there are a few additional steps to be completed in fire situations.

This document does not cover fire restriction or red flag warning messaging.

Operational Procedure:

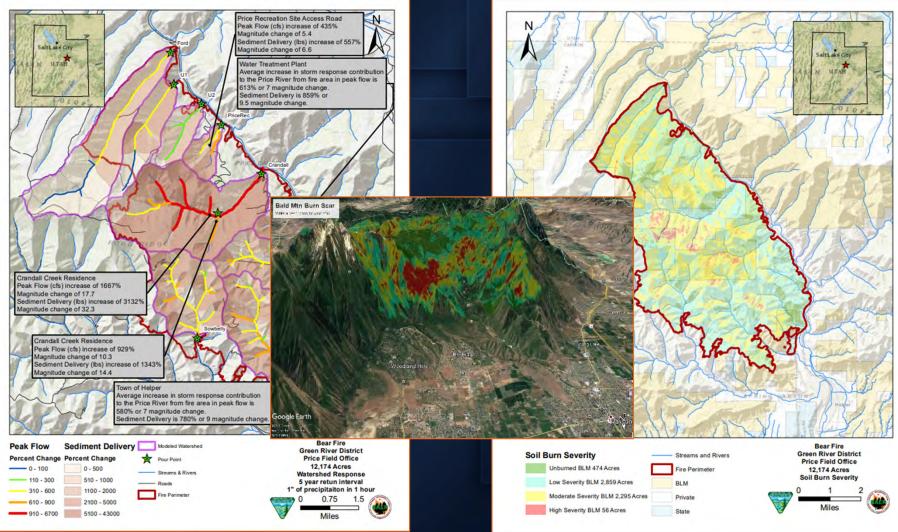
Fires near the roadway have the potential to impact traffic, and can quickly grow, change direction, or behave in other unpredictable or unexpected ways. Fires near the roadway are incidents that should be carefully monitored by the Control Room for safety or traffic impacts.

<u>Incident Evaluation</u> is critical when monitoring fires. Be attentive to impacts not only locally near the scene, but to the larger transportation system as well. Full freeway closures, for example, can be very impactful statewide - and not always in expected locations.

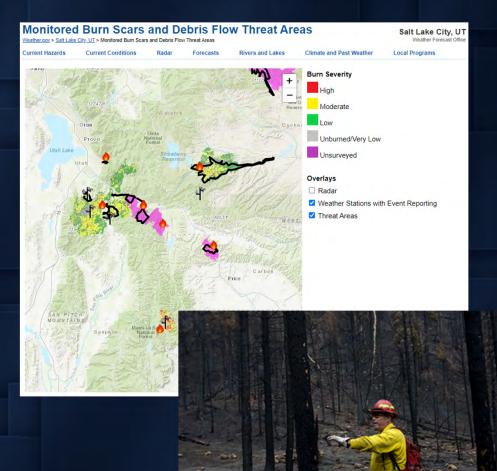
Incident Response

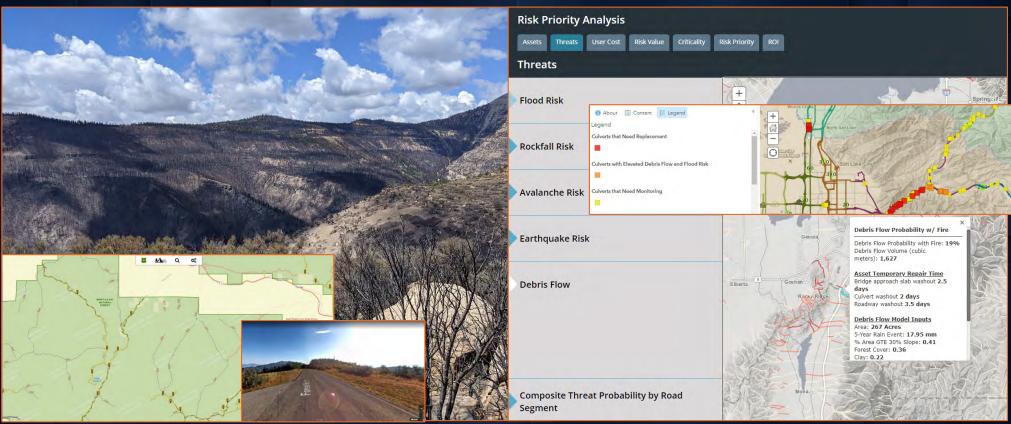
Fires near the roadway should be categorized as 'Fire Affecting Roadway' in Event Management.

Initial Reconnee



Outside Agency Coordination


After The Fire – BAER Assessment

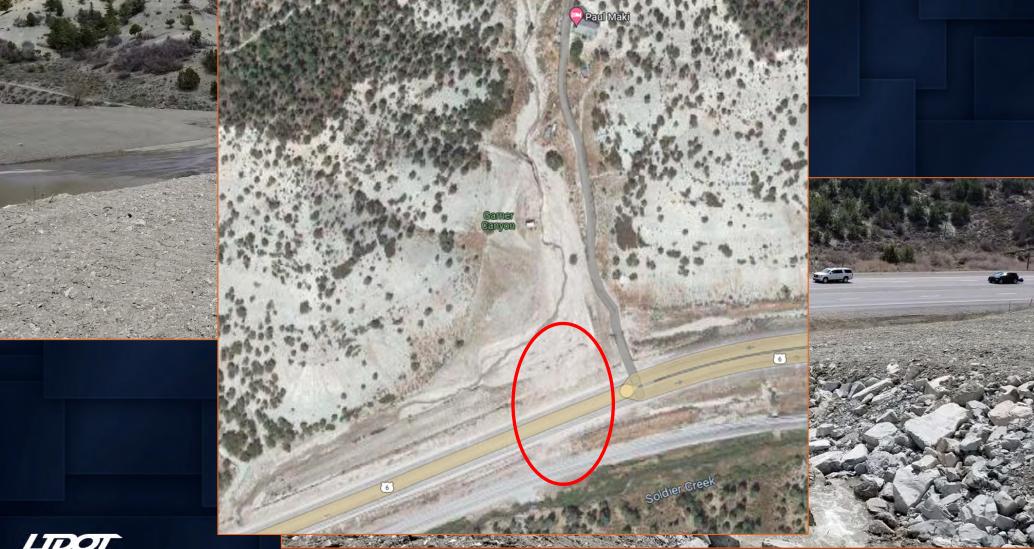

After The Fire – NWS Assessment

- NWS SLC Hydrologist will join BAER team or conduct own assessment.
- "Utah Post Wildfire Team" convenes
 - State/federal officials
 - Local officials from impacted communities
 - Other affected stakeholders
 - UDOT Weather Operations to join this team 2023
- Will deploy tripod(s), issue weather outlooks (various deliverables), watches/warnings, provide decision support, and hold community meetings/conduct area-wide messaging

After The Fire – Weather Ops. Assessment

 Evaluate slope, burn intensity, debris flow probability, culvert quality, and placement of the portable RWIS...

Forecasting/Alerting Process


Assessment after first debris flow

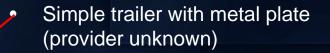
- What were the impacts?
- How much rain fell?
- What does the landscape look like now?
 - Mitigation efforts?
 - If yes, was it effective?

• Reevaluate alerting criteria and longer-term use of portable RWIS.

Drainage Mitigation Tank Hollow Fire

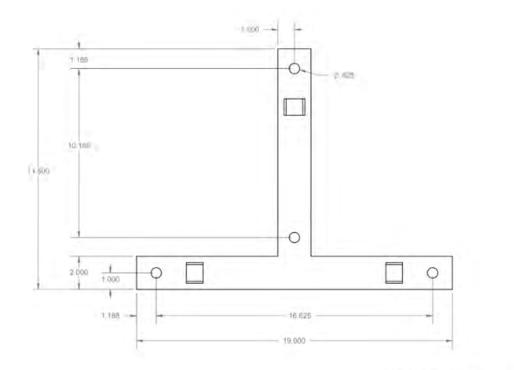
Trailer/Tripod Placement

- Deploy after ~100% containment only
- Primary concerns water treatment plant, e.g., and not a UDOT road?
- Land available coordination with landowners
- Radar coverage
- Cell/solar coverage...
- Not visible
- Camera view / dummy camera
- Not the highest point, but also not in a drainage
- RAWS (time of deployment) predominantly during the fire
- Winter weather need to pull it back? Trailers usually yes



Trailer Setup

Trailer Setup Ready to transport


- <u>Campbell Scientific UT10</u> tower with base
 - Battery/controller enclosure (Kobalt Jobsite Box)
- Pole with solar panels and pole mount
- Spot for spare tire

BAL

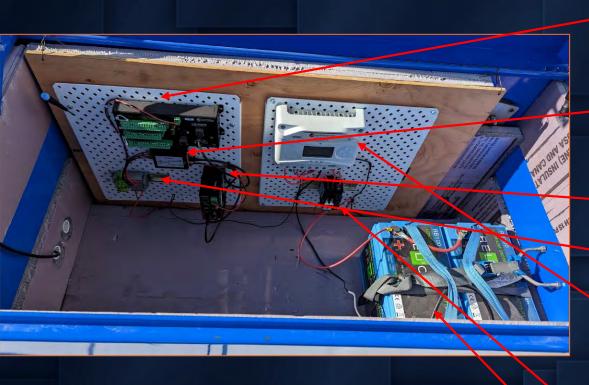
KOBALT

Trailer Setup UT10 Tower bases

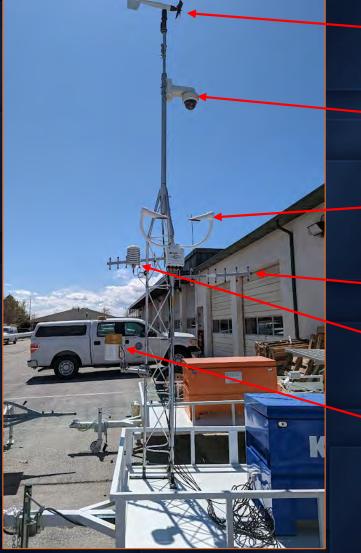
REFERENCE ONLY NOT FOR CONSTRUCTION

PROPRIETARY AND CONFIDENTIAL THE IN FORWATION CONTAINED IN THIS	TOLERANCES + .010	ALA TOTAL	N LEISHMAN	N LEISHMAN	12/12/2006	12/12/2006	
DRAWING IS THE SOLE PROPERTY OF CAMPBELL SCIENTIFIC, INC. ANY REPRODUCTION IN PART OR AS A WHOLE	- 010 INVESTOREMENTED	COLUE	UT10 TOWER BASE		Е	LOF 1	
WITHOUT THE WRITTEN PERMISSION OF CAMPBELL SCIENTIFIC, INC. IS PROHIBITED.						BASE 00	

Trailer Setup Enclosure



Trailer Setup Transporting equipment (gently...)


Trailer Setup Enclosure equipment

- <u>Campbell Scientific</u>
 <u>CR1000X</u> datalogger
- Network camera midspan/POE injector
- Cell modem
- Power distribution
- Morningstar Prostar MPPT-40M solar controller
- Breakers
- 2 <u>RELION RB100</u> LiFePO4 batteries

Trailer Setup – Tower equip.

- <u>RM Young 05103</u> anemometer (provided by Campbell Scientific)
- Axis M5525-E network camera with 191L61 wall-and-pole mount
- <u>Campbell Scientific CS125</u> present weather and visibility sensor
 - Two <u>Wilson 301111</u> yagi antennas (main and diversity)
- Variety of temp/RH sensors... Currently a <u>Campbell Scientific</u> <u>HygroVUE10</u>, radiation shield
- Texas Instruments TE525 rain gauge (provided by Campbell Scientific) on crossarm and right-angle mount

Trailer Setup – Cable mgmt.

Tripod Setup Tripod equipment

- Campbell Scientific <u>CM355</u> w/ <u>CM310</u> (<u>CM106B</u> more standard)
- Campbell Scientific <u>850</u> and <u>17589</u> lightning rod
- TE525
- Wilson 301111
- "Dummy" camera
- Temp/RH sensor, radiation shield
- Anemometer
- <u>Campbell Scientific ENC16/18</u> enclosure
- <u>Campbell Scientific 31107</u> solar panel mounting kit
- (Large) solar panel (Dasol DS-A18-135, discontinued)

Tripod Setup Enclosure equipment

- CR1000X
- <u>Morningstar</u>
 <u>Sunsaver MPPT-15L</u>
- Cell modem
- Breakers, power distribution

RELION RB52

Axis M5525

- Low-power network PTZ camera to evaluate radar and conditions
- Set up to share with desired stakeholders with controlled logins

05103 Anemometer

- Evaluate the potential of blowing dust
- Evaluate any downburst winds – assess strength and lifecycle of a thunderstorm

CS125 Visibility and Present Weather Detector

 Evaluate blowing dust severity – Can detect rainfall, but will use rain gauge ultimately

Sometimes a Campbell Scientific CS655 (soil moisture)

 Evaluate wetness of soil to determine if blowing dust could be a concern

TE525 Rain Gauge

 The star of the show
 Tipping bucket mechanism, datalogger will alert at specified threshold(s)

Sometimes a Campbell Scientific ClimaVUE50...

 All-in-one device that combines temp/rh, wind, and precipitation, but also has lightning detection and solar radiation

 Better for cheap, long-term installs where wind is not a concern

(Consistent) Wiring Diagram

Master CR1000X Program Wiring Diagram: Updated 5/5/2021

RMYoung Anemometer	Black Box	CR1000X
Green	WD Sig (4)	SE 1
Blue	WD Exc (5)	EX 1 (VX 1)
Red	WS Sig (6)	P1
White	WD Ref (3)	SG
Black	WS Ref (2)	SG
Clear or Yellow	Shield (1)	PG

Vaisala Non-Invasive DSC/DST	CR1000X
Black	C5 (Tx)
White	C6 (Rx)
Grey	PG
Brown	12V
Blue	PG

CR1000X
C5 (Tx)
C6 (Rx)
12V
PG

CC640 Camera	CR1000X	MD485
BL		В
YL	-	A
GN	-	SG
вк	PG	
RD	12V	-
WH	C8	-

LI200X Pyranometer	CR1000X
Red	SE 5
Black	SE 6
White	SG
Clear	SG

EE181 Temp/RH	CR1000X
Yellow	SE 3
Blue	SE 4
Red	12V
Clear	PG
Black	PG

Rotronic HC2S3 Temp/RH	CR1000X
Brown (Temp)	SE 3
White (RH)	SE 4
Green	12V
Grey	PG
Yellow	SG
Clear	SG

HMP45C Temp/RH	CR1000X
Yellow	SE 3
Blue	SE 4
Red	12V
Black	PG
White	SG
Clear	SG

Hygrovue 10	CR1000X
White	C3
Brown	12V
Black	PG
Clear	PG

SR50 Snow Depth Sensor	CR1000X
Green	C7
Red	12V
Black	PG
White	PG
Clear	SG

TE525 Precip Bucket	CR1000X
Black	P2
White	SG
Clear	SG

107 Ground Temp Subprobe	CR1000X
Black	EX 1 (VX 1)
Red	SE 2
Purple	SG
Clear	SG

CS125 Present Wx Sensor	CR1000X
Blue	C1
White	C2
Red	12V
Black	PG
Green	PG
Clear (can be snipped)	PG

CS215 Temp/RH	CR1000X	CS125
Red	-	Pin 1
Green	-	Pin 2
Black/White/Clear	÷	Pin 3
Red	12V	-
Green	C1	÷
Black/White/Clear	PG	-
Clear	SG	-

Maintenance/Calibration

- Treated like any other RWIS when in the field
 - Part of annual preventative maintenance cycles and will conduct any response maintenance
- Since they're usually brought back in fall, sensors can receive calibration and maintenance at the office before being placed back in the field the following year

Longer-Term Maintenance

 As needed, bring to vehicle maintenance at UDOT HQ for repaint and tail-light repair.

 Repair/replace solar poles and solar mounts, jack stands, enclosures

Rainfall Threshold Determination

• Cannon et al., 2007:

- South-central and southwestern Colorado:
 - $l = 6.5 D^{-0.7}$
 - $l = 9.5^* D^{-0.7}$
- Ventura County and San Bernardino/San Gabriel/San Jacinto Mountains, California
 - $l = 12.5^* D^{-0.4}$
 - $l = 7.2^* D^{0.4}$
- Same California Mountains, after one year of vegetative recovery and sediment removal:
 - $I = 14^* D^{-0.4}$
 - Threshold of 25 mm/hr (~1 in/hr) higher
- I = rainfall intensity (mm/hr)
- D = duration in hours

Rainfall Threshold Determination Looking for that 10-min threshold...

Equation	Rate required for 10 minutes (mm/hr)	10 minute amount required (inches)
$I = 6.5 * D^{-0.7}$	22.783 mm/hr	0.149"
$I = 9.5 * D^{-0.7}$	33.299 mm/hr	0.218"
<i>I</i> = 12.5* <i>D</i> ^{-0.4}	25.596 mm/hr	0.168"
$I = 7.2 D^{-0.4}$	14.743 mm/hr	0.097"
	AVERAGE:	0.158"

But... The Seeley Fire was observing debris flows < 0.15"/10 minutes... And we'd like to be on the more cautious side... Therefore, we chose a value of 0.10" in 10 minutes for highly sensitive fires

Eventually decided **0.15**" in 10 minutes for moderately sensitive fires and **0.2**" in 10 minutes for low sensitivity fires

Evaluate fire sensitivity each year (usually trending lower, or dropped altogether) Note other duration thresholds....

1	'Example CR1000X program automatically generated by RWISPrograms.py on 04/2
2	'Generator: Cody Oppermann
3	
4	'Instruments included:
5	'HygroVUE, 05103 or Legacy Alpine Anemometer, CS125, TE525
6	'Output Data Tables: MesoAtmo, MesoRoad, Daily, PresentWx
7	
8	'Modifications:
9	'Edited for rainfall alerting for Slack and via email
10	
11	'General notes:
12	'Made with variables for sensors that may not exist for output table
13	'consistency among all UDOT RWIS.
14	'Variables not NTCIP compliant - dealt with in post-processing.
15	
16	'Declare Constants:
17	Const TE525_exist = 1
18	Const solar_exist = 2
19	
20	'Declare Public Variables
21	'Main Variables
22	Public Batt_volt
23	Public Air_Temp_f
24	Public RH_percent
25	Public TdC
26	Public TdF
27	Public TvC
28	Public TvF
29	Public Wind_Dir_deg
30	Public Wind Speed mph
31	Public Two Min Wind Dir deg
32	Public Two_Min_Wind_Speed_mph
33	Public Precip As String *3
34	Public Precip_Intensity As String *8
35	Public Solar_v
36	Public Ground 18in Temp f
37	Public SnovfallRate
38	Public Rain
39	Public Snov_Depth_in
40	
41	Public TRHData(2)
42	Alias TRHData(1) = AirTC
43	Alias TRHData(2)=RH
42	Alias TRHData(1)=AirTC

45	'CS125 Variables - message output format set to Full METAR on the CS125.						
46	Dim CheckVal As Long, TempString As String						
47	Dim NBytesReturned, OutString As String * 40						
48	Public CS125 In As String * 200						
49	Public cs125out(27) As String						
50	Alias cs125out(1)=messID						
51	Alias cs125out(2)=sensorID						
52	Alias cs125out(3)=sysStatus						
53	Alias cs125out(4)=messInterval						
54	Alias cs125out(5)=vis_m_string						
55	Alias cs125out(6)=visUnits						
56	Alias cs125out(7) = avgDuration						
57	Alias cs125out(8)=userAlarm_1						
58	Alias cs125out(9)=userAlarm_2						
59	Alias cs125out(10)=Emitter_failure						
60	Alias cs125out(11)=Emitter_lens_dirty						
61	Alias cs125out(12) = Emitter_temp_error						
62	Alias cs125out(13)=Detector_lens_dirty						
63	Alias cs125out(14)=Detector_temp_error						
64	Alias cs125out(15) = Detector_saturated						
65	Alias cs125out(16)=Hood_temp_error						
66	Alias cs125out(17) = Ext_temp_error						
67	Alias cs125out(18)=Signature_error						
68	Alias cs125out(19)=Flash_read_error						
69	Alias cs125out(20)=Flash_write_error						
70	Alias cs125out(21)=Particle_limit_error						
71	Alias cs125out(22) = Particle_count						
72	Alias cs125out(23)=Intensity_mm_hr						
73	Alias cs125out(24)=SYNOPCode						
74	Alias cs125out(25)=PresentWeather						
75	Alias cs125out(26)=CS125Temp						
76	Alias cs125out(27)=CS125RH						
77							
78	Public visibility_m						
79	Public visibility mi						

81	'Declare Private Variables - For vet-bulb temp calculation
82	Dim AirTC 9
83	Dim SPkPa 6
	Dim Tryg 7
	Dim Typg 8
	Dim Vpg_9
	Dim Vp 10
	Dim SVp 11
	Dim Tych 12
90	Dim VpgVpd 13
91	Dim Top 14
92	Dim Bottom 15
93	Dim N_17
94	
95	'Define Units
96	Units Air_Temp_f=Deg F
97	Units RH_percent=%
98	Units Wind_Speed_mph=miles/hour
99	Units Wind_Dir_deg=Degrees
100	Units Snov_Depth_in=inches
101	Units Solar_v=W/m*2
102	Units Batt_volt=Volts
103	Units visibility mi=miles
	Units TdF=Deg F
	Units TvF=Deg F
	Units SnovfallRate=in/hr
	Units Rain=inches
	Units Ground_18in_Temp_f=Deg F
109	
	'Variables for Slack and email rainfall alert
111	Dim URI As String * 78 = @"Slack Link" 'Insert Slack WebHook here Dim Content As String * 100 = @"{""text"": ""There has been 0.1\"" of rain at the Bear (Tripod) Burn Scar in 10 minutes!""}"
	Public HTTPResponse As String * 90 Public HTTPReader As String * 90 = ""
	Public HTTPResult As String * 90
116	Fublic AllPRESULE AS Soliding - 50
117	Const ToAddr = @"test@example.com" 'Insert email address here
	Const Subj = @"Rainfall Alert"
	Public email triggered
120	Public ServerResp
121	
	Public RunningPrecip10min
	Public AlertTimer
124	Const AlertTimerLimit = 3600 'Only alert once every hour in a one-second scan
	Public Trigger

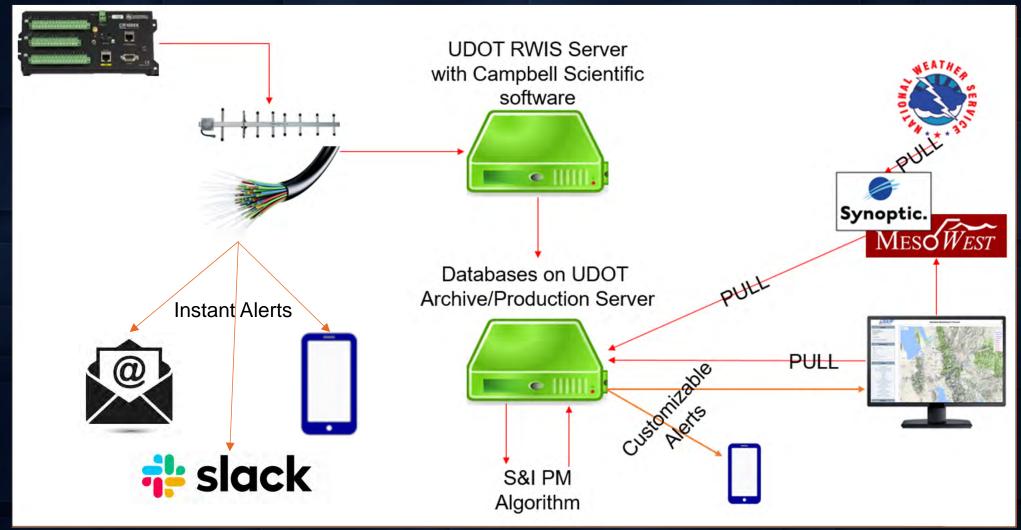
128	'Define Data Tables
129	'MesoAtmo table
130	DataTable (MesoAtmo, 1, 1008)
131	DataInterval (0,10,min,10)
132	Sample (1, Air Temp f, FP2)
133	Sample (1, RH percent, FP2)
134	Sample (1, Two Min Wind Dir deg, FP2)
135	Sample (1, Two Min Wind Speed mph, FP2)
136	Maximum (1, Wind Speed mph, FP2, False, True)
137	Sample (1, Precip, String)
138	Sample (1, Precip_Intensity, String)
139	Average (1, Snow Depth in, FP2, False)
140	Average (1, Solar v, FP2, False)
141	Sample (1, Batt_volt, FP2)
142	Sample (1, visibility_mi, FP2)
143	Sample (1, TdF, FP2)
144	Sample (1, TwF, FP2)
145	Sample (1, SnowfallRate, FP2)
146	Totalize (1, Rain, FP2, False)
147	EndTable
148	
149	'MesoRoad table
150	DataTable (MesoRoad, 1, 1008)
151	DataInterval (0,10,min,10)
152	Sample (1, Ground 18in Temp f, FP2)
153	EndTable
154	
155	'Daily table
156	DataTable (Daily,1,-1)
157	DataInterval (0,1440,min,10)
158	Minimum (1, Batt_Volt, FP2, False, True)
159	Maximum (1, Air_Temp_f, FP2, False, True)
160	Minimum (1, Air_Temp_f, FP2, False, True)
161	Maximum (1, RH_percent, FP2, False, True)
162	Minimum (1, RH_percent, FP2, False, True)
163	Maximum (1, TdF, FP2, False, True)
164	Minimum (1, TdF, FP2, False, True)
165	Maximum (1, TwF, FP2, False, True)
166	Minimum (1, TvF, FP2, False, True)
167	Average (1, Wind_Speed_mph, FP2, False)
168	Maximum (1, Wind_Speed_mph, FP2, False, True)
169	Average (1, Ground_18in_Temp_f, FP2, False)
170	Totalize (1, Solar_v, IEEE4, False)
171	EndTable

1/3	PresentWx table	
174	DataTable (PresentWx,1,1008)	
175	DataInterval (0,10,min,10)	
176	Sample (1, visibility_mi, FP2)	
177	Sample (1, Particle_count, FP2)	
178	Sample (1, Intensity_mm_hr, FP2)	
179	Sample (1, SYNOPCode, FP2)	
180	Sample (1, PresentWeather, String)	
181	Sample (1, sysStatus, FP2)	
182	Sample (1, Emitter_failure, FP2)	
183	Sample (1, Emitter_lens_dirty, FP2)	
184	Sample (1, Emitter_temp_error, FP2)	
185	Sample (1, Detector_lens_dirty, FP2)	
186	Sample (1, Detector_temp_error, FP2)	
187		
188		
189	Sample (1, Ext_temp_error, FP2)	
190		
191		
192		
193		
194		
195		
196		
197		
198		
199		
200		
201		
202		
203		
204		
	BeginProg	
206		
207		
208		
209		
210		
212		
212		
214		
215		
216		
217		
218		

Ground 18in Temp f = "NAN"

```
'LI200X Pyranometer measurement
222
       If solar exist = 1
223
         VoltDiff (Solar v, 1, mV200, 3, True, 0, 60, 1, 0)
224
         If Solar v<0 Then Solar v=0
225
         Solar w=Solar w*200
226
       Else
227
         Solar w="NAN"
228
       EndIf
229
       'TE525 Tipping Bucket Rain Gauge
231
       If TE525 exist = 1
        PulseCount (Rain, 1, P2, 1, 0, .01, 0)
232
       Else
233
         Rain="NAN"
234
235
       EndIf
236
237
       'Rainfall alerting code.
238
       TotalRun (RunningPrecip10min, 1, Rain, 600)
239
240
       If RunningPreciptOmin > 0.1 AND Trigger = 0 Then
         HTTPResult = HTTPPost (URI, Content, HTTPResponse, HTTPHeader)
241
242
         email triggered = EmailRelay (ToAddr, Subj, Content, ServerResp)
243
         Trigger = 1
244
         AlertTimer = AlertTimer+1
245
       ElseIf AlertTimer < AlertTimerLimit AND Trigger = 1
246
         AlertTimer = AlertTimer + 1
247
       Flee
248
         Trigger = 0
249
         AlertTimer = 0
250
       EndIf
252
       'Call Output Tables
253
       CallTable MesoAtmo
254
      CallTable MesoRoad
255
       CallTable Daily
256
       CallTable TwoMinute
       CallTable PresentWx
258
259
     NextScan
260
261
     SlowSequence
262
263 Scan (10, Sec, 0, 0)
```


265 'HygroVUE 266 SDI12Recorder(TRHData(), C3, "0", "M!", 1, 0) 267 Air Temp f = AirTC*1.8 + 32 268 RH percent = RH 269 'WetBulbCalc for HygroVUE5/10 270 AirTC 9= (5/9) * (Air Temp f-32) 271 SPkPa 6=101.325 272 SatVP(SVp 11, AirTC 9) 273 Vp 10=RH percent*SVp 11/100 274 'Dev Point calculation TdF 275 DewPoint (TdC, AirTC 9, RH percent) 276 If TdC>AirTC 9 OR TdC=NAN Then TdC=AirTC 9 277 TdF=1.8*TdC+32 278 'Find Wet-Bulb TvF 279 Top 14=AirTC 9 280 Bottom 15=TdC 281 For N 17 = 1 To 25 282 Tupg 8=Tug 7 283 Twg 7=((Top 14-Bottom 15)/2)+Bottom 15 284 WetDryBulb (Vpg 9, AirTC 9, Tvg 7, SPkPa 6) 285 VpgVpd 13=Vpg 9-Vp 10 286 Twch 12=ABS (Twpg 8-Twg 7) 287 If VpgVpd 13>0 Then 288 Top 14=Twg 7 289 Else 290 Bottom 15=Twg 7 291 EndIf 292 If Twch 12<0.01 OR N 17=25 Then ExitFor 293 Next 294 TwC=Twg 7 295 TvF=1.8*TvC+32 296

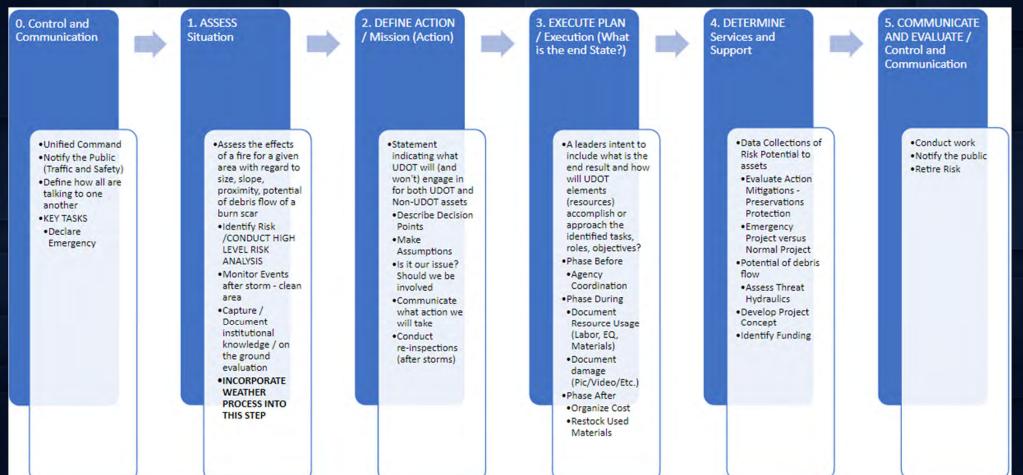


299	'CS125 Stuff
300	'Setup datalogger port for binary communication
301	SerialOpen (COMC1, 38400, 3, 0, 1000)
302	TempString = "POLL:0:0"
303	CheckVal = CheckSum (TempString, 1, 0)
304	OutString = CHR(2) + TempString + ":" + FormatLong (CheckVal, "\$04X") + ":" + CHR(3) + CHR(13) + CHR(10)
305	'Send get data command to cs125, then pause for 1 second
306	SerialOut (COMC1, OutString, "", 0, 100)
307	Delay (1,1,Sec)
308	'Set up COMC1 to receive incoming serial data.
309	<pre>SerialInRecord (ComC1, CS125_In, &h02, 0, &H03, NBytesReturned, 01)</pre>
310	'Split out visibility parameters from string input
311	SplitStr (cs125out(),CS125_In," ",25,5)
312	visibility_m = vis_m_string
313	visibility_m = visibility_m*2.19 ' UDOT's modification
314	visibility_mi = visibility_m*0.000621371192
315	
316	If visibility_mi > 10 Then
317	visibility_mi = 10
318	EndIf
319	
320	If visibility_mi < 0.01 Then
321	visibility_mi="NAN"
322	EndIf
323	
324	If Intensity_mm_hr >= 0.3 OR SYNOPCode=51 OR SYNOPCode=61 OR SYNOPCode=71 OR SYNOPCode=72 Then
325	Precip="Yes"
326	If Intensity_mm_hr <3 Then
327	Precip_Intensity="Light"
328	ElseIf Intensity_mm_hr >= 10 Then
329	Precip_Intensity="Heavy"
330	Else
331	Precip_Intensity="Moderate"
332	EndIf
333	Else
334	Precip="No"
335	Precip_Intensity=" "
336	EndIf
337	
338	If CS125_In="NAN" Then
339	Precip=" "
340	Precip_Intensity=" "
341	EndIf
342	
343	If visibility_mi < 0.5 AND Precip="No" Then
344	Precip_Intensity = "Fog"
245	FadIf

347	'Determine snowfall rate
348	If Precip="Yes" AND TyF < 34 AND visibility mi < 10 Then
349	SnovfallRate = 0.5 / visibility mi
350	If visibility_mi < 0.25 AND Particle_count <= 200 Then
351	SnovfallRate = 2
352	ElseIf SnovfallRate >= 5
353	SnovfallRate = 5
354	EndIf
355	Else
356	SnovfallRate = 0
357	EndIF
358	
359	If visibility mi="NAN" Then
360	SnovfallRate = 0
361	EndIf
362	
363	'Clear out COMC1 serial buffer
364	SerialFlush (ComC1)
365	SerialClose (ComC1)
366	
367	NextScan
368	EndProg

UDOT's RWIS Network -Dataflow

Challenges/Lessons Learned


• Deployment challenges

- Landowner
- Out of view
- Capture rainfall without being a lightning rod
- Solar/cell coverage
- Timeliness/latency of the alerts, public messaging in rural areas
- How long will the burn scar be a threat
 - Some burn scars can cause issues long after it is thought that it has healed

- More of a NWS impact? Or a UDOT impact? Or both?... Who has the more appropriate resources?
- Coordination/flow of information
 - What work is being done outside Weather Operations?
 - Sharing information outside of UDOT
 - Avoid duplication of efforts

Future Process – UDOT Wide

Future Process – UDOT Weather Operations

Mostly the same, but with increased coordination No intention to add more portable RWIS

Identify Fire	Determine if there could be impacts to UDOT infrastructure	Debris flow potential is identified	Deploy portable weather station	Add burn scar to UDOT GIS Burnscar map	Debris flow has been identified
	 Assess fire intensity, debris flow potential and available transportable material Use BAER assessment maps if available Utilize NWS and NFS hydrologists if available Follow all small and large drainages Examine culvert capabilities Determine debris flow potential rainfall rate (rainfall in 10 minutes) 	 Add to forecaster procedures Contact shed and area supervisors If determined to be a high impact, contact District Engineer and Emergency Management 	 Coordinate with NWS to avoid duplication Determine if camera coverage is important (lack of radar coverage) Consider access and permission (ie. land owners, NFS) Consider placing out of line of sight and out of harm's way Consider solar and communication availability Decide if a weather trailer or weather tripod is more appropriate 	 https://uplan.map s.arcgis.com/apps/ mapviewer/index. html?webmap=f6d dae1d337b49e88c 044a8bbf73b97c 	 Alert shed supervisor, area supervisor, district engineer depending on level of impact Alert traffic controllers Alert NWS via chat Follow up with addition alerts for any incoming threat Document results on GIS Map

IIJA Impacts

• Five-year PROTECT program

 Resilience planning and improvements

From the "2023 UDOT Strategic Direction" https://udot.utah.gov/strategic-direction

Resilience Improvement Plan

Implementation of a Resilience Improvement Plan can reduce the non-Federal cost share for a project by up to 10 percent.

Resilience improvement plans include:

- a risk-based assessment of vulnerabilities of transportation assets and systems to current and future weather events and natural disasters
- a systemic approach to surface transportation system resilience
- immediate and long-range planning activities and investments

Conclusion

- Wildfires will continue, the severity by year will ebb and flow
- Be prepared and continue to have equipment ready to go if a fire is expected to cause impacts
- Focus on UDOT safety and swift response and coordinate with all applicable stakeholders

Questions?

Jeff Williams Weather Program Manager jeffwilliams@utah.gov

Cody Oppermann Program Specialist/RWIS Coordinator <u>coppermann@utah.gov</u>