Broadband Communications Design Strategies and Considerations For ITS Applications in District 2

The Evolution of Communications System Architecture and Supporting Emerging Technologies

> Jeremiah Pearce P.E. Galtrans District 2 Keith Koeppen P.E. Galtrans District 2 Kenny Shipley, Caltrans District 2

Abstract

The availability of robust high-speed communication options continue to be limited in remote rural areas of Northern California. Caltrans District 2 has made improvements by installing Stateowned point-to-point microwave communications infrastructure to expand the availability of high-speed communications through the interstate 5 corridor. In addition the State of California has invested 326 billion into an ambricous place to provide broadband capabilities of Jural arses of California through the Broadband be unal arses of California has invested be unal arses of California has invested by the broadband capabilities

This preservery will putline the states design, and implementation statems District 2's Field Element Network (FER communications estems and highlight two private boint-to-point microwave projects that support the strategic direction of District 2's communications plan.

List of Acronyms **POTS – Plain Old Telephone Service ISDN** – Integrated Services Digital Network ISM – Industrial, Scientific, and Medical (License free Pastrum) rotocol ITS – Intelligent Transportation System CWWP2 - Caltrans Commercial Wholesale Web

List of Acronyms

CTV --- Closed Circuit Tele

RSL – Received Signal Level MMBN – Middle Mile Broadband Network CAV – Connected and Autonomous Vehicles

HAR – His worddysory Radio CDT – California Department of Technolog POP – Point-of-presence

Relevant Past Presentations

• "Microwave Communications for Rural ITS Applications", Ian Turnbull, June 2006

ttp://www.westernstatesterum.org/Documents

ibuil.polt

Retaining requirements

Relevant topics

Relevant Past Presentations

 "Field Element Network Design for a Rural Transportation Management Center, Parts One and Two" Ian Turnbull and Jeremiah Pearce, June 2012

res. floods, major

etc

hitecture (Dial-on-Demai

http://www

esentation

IMCPleauel.pd

Relevant Past Presentations

 "Field Element Network Design for a Rural Transportation Management Center, Parts One and Two" Ian Turnbull and Jeremiah Pearce, June 2012

estemstatestetum org/Documents/2

Pearce Final2

Caltrans D2 Tringlaul

MO.//WWW

esentation

ntCommercin.

Relevant Past Presentations

 "The Field Element Communications End Game: From POTS to Licensed Microwave" Jeremiah Pearce, June 2014

EINALD EleldEleme

Relevant Past Presentations

 "Cellular Communications in Rural Applications" Keith Koeppen, June 2018

http://westeinstatesforum.org/Documents/2018/Present ations/CaliransD2_Koep(EPLEINAL_WEB_CellularCo mminRuralApplications.cdf

"Engineering Considerations for Microwave Communications Systems" GTE Lenkurt, 1970
"Standards and Guidelines for Communication

- Keith Koeppon
- Lonnie Holdos
- Jeff Worthington

Sites - R56" Motorola, 20

Rural TMCs often must locus on incidents that occur over large geographic areas with low population densities

Rural TMCs often must focus on incidents that occur over large geographic areas with low population densities Winter Operations

 Rural TMCs often must focus on incidents that occur over large geographic areas with low population densities

• Winter Operations

• Wildfire

hoto by Matthew Henderson

Rural TMCs often must focus on incidents that occur over large geographic areas with low population

densities Winter Operations

WildfireFloods

Randy Pench/The Sacramento Bee

70

 Rural TMCs often must focus on indicents that occur over large geographic areas with low population

Operations

Freight

fedex.com

Major Freight Corridor Incidents

ANTLERS BRIDG

Rural TMCs are physically smaller than urban

Rural TMCs are physically smaller than urban

Rural TMCs are physically smaller than urban

PRESET 3

his may

ng scor

The Rural TMC collects data from the

he Rural TMC collects data from the

Current Conditions: Spring Garden Timestamp: 01/16/2020 02:53 PM

Surface Sensors		
Sensor #	1	2
Surface Status	Snow Watch	Snow Watch
Surface Temperature	30.20 °F	30.56 °F
Pavement Temperature		
Surface Water Depth		
Surface Salinity	×	×
Surface Freeze Point	×	×
Surface Black Ice Signal	Other	Other

Near	Quincy
Longitude	-120.81840°
Latitude	39.91438°
Elevation	3813 ft
Direction	West
County	Plumas
Route	SR-70
Milepost	131.35

Temperature	
Air	
Wet Bulb	
Dewpoint	
24-hr Max	
24-hr Min	
Avg	0 m
Spot	0 mp
Max	
Precipit	ation
Y/N	
Situation	Rain
Rate	
1 hr	
3 hr	
6 hr	
12 hr	
 24 hr	
Start	01/16/2020
End	1 Barrer
Visibi	lity
Visibility	No
Visibility Situation	Not
 Oth	er

Relative Humidity

Atmospheric Pressure

Min	10 22 °E	Avera
WIIII	19.22 1	w
Avg	0 mph from N	
pot	0 mph from SE	Hour Pred
Max	0 mph	Precipitation
ipita	ation	1.0.0
Y/N	Yes	Surface Ten
tion	Rain Moderate	Surface Ten
late	0.227 in/hr	
1 hr	0.161 in	
3 hr	0.441 in	Surface
6 hr	0.500 in	Surface
2 hr	0.500 in	
4 hr	0.500 in	
tart	01/16/2020 06:03 AM	
End	1.	
sibil	lity	
ility	Not Reported	
tion	Not Reported	

98%

Not Reported

32.00 ° 32.00 °

37.76 °F

12:00 AM through 02:53 PM	
Air Temperature	
Relative Humidity	
Average Wind Wind Gust	

Graphical Summary for 01/16/2020

One-	
r Precipitation	-
ation Situation	m
ce Temperature	

nperat

usi	
ion	-
ion	01-100
ture	
1	
ture	And the second
2	

Historical Data

Detailed Graphs Station List

The Rural TMC collects data from the

IC

G

RL

The Rura TMC then controls various lements to communicate en-route trav formation through the following:

MS)

TRAFFIC INFO TUNE RADIO TO 1610 AM

SOURCE CALTRANS

ENLARGE MAR

Leaend

Road Temp #32

Caltrans :: Commercial Wholesale Web Portal :: Version 2

Description

California has 12 unique districts that have Intelligent Transportation Syste the individual district ITS data available in a uniform manner. ITS field data Chain Controls has been reviewed and given precise location information Wholesale Web Portal 2 (CWWP2).

The ITS datasets in the CWWP2 are provided in four different documented Text - TXT) so that third party application developers can integrate Caltran

Conditions of Use

Please read the Conditions Of Use before using these data sets.

Announcements

- October 20, 2020 : On November 9, 2020 Caltrans will be migrating be available until November 9th, 2020 and will be redirected to HTTF and applications that utilize the CWWP2 as necessary to accommod
- July 23, 2019 : On October 1, 2019 traveler information data files loc in your application. Please start using this website as soon as possib

Data Format and File Layout

Data is available in four file formats that contain the same information to al

- CSV Comma Separated Values
- JSON JavaScript Object Notation
- TXT Text file with delimeter value of "ÿ" or 0xFF
- XML Extensible Markup Language

C oss.weathershare.org/?clat=41.07084&clng=-122.1553&zoom=8

📾 Active CMS 🔯 CCTV Camera 🔇 Construction 🕕 Information

DIKN Inactive CMS Chain Restriction A Incident

Alturas

The Rural TMC then controls various

te tra

VID, V

IG

Ghangeable Message Jign

DMS)
Highway Advisory-Radio (HAR)
The Caltrans Commercial Albele of the Caltras Albele of the Caltrans Commercial A

Harsh Field Conditions

In addition to the typical conditions we see with sensitive electronic equipment on the roadside (dust, humidity, vibration, etc.):

- Winter temperatures of –30° F in some locations and summer temperatures of +120° F in the Sacramento Valley
- Heavy Mountain Snow
- Extreme wildfire risks and behavior
- Valley Floods
- The field conditions can be as challenging as anywhere in the US

Telecommunications

Telecommunications

Telco services available in cities are often not

Telecommunications

Telco services available in cities are often not watable in rural areas District 2 is served by a total of eight different closs of varying size and capability

Telecommunications

Telco services available in cities are often not available in rural areas District 2 is served by a total of eight different closs of varying size and capability Many reas of hard size and capability danse reas of hard size and capability

Telecommunications

(limi

ell

District 2 Telco Services generally limited to:

AT&T area only) Ine telco breadband/Leased-line (limited)

alareas

Cell Coverage Map – AT&T

Cell Coverage Map – Verizon

Telecommunications

District 2 Utilizes the following Services for TMS:

SDN (AT&T area only)

APOTS

Cellular (limited and only with a POTS beckup)

lareas

-Public/Private Fixed Wireless (limited)

Telecommunications

In addition, District 2 utilizes the following Department owned communications infrastructure

Fiber Point-o-Point Microver

Rural TMC Technical Architecture

All of this requires a robust technical architecture that will support reliable operations during the most severe conditions.

Rural TMC Technical Architecture

the following tenets:

Given the various constraints of operating in a rural environment, the D2 Rural TMC was designed with

Rural TMC Jechnical Architecture

Given the various constraints of operating in a rural environment, the D2 Rural TMC was designed with

Field elements will communicate over an IP based

ollowing tenets:

Area Network

the

Rural TMC Jechnical Architecture

Given the various constraints of operating in a rural environment the D2 Rural TMC was designed with

• Field elements will communicate over an IP based

All cabling will use a standards based,

ollowing tenets:

Area Network

structured cabling approach

the

Wide /

Rural TMC Jechnical Architecture

Given the wandus constraints of operating in a rural environment, the D2 Rural TMC was designed with

• Field elements will communicate over an IP based

• All cabling will use a standards based, structured cabling appreach

the following tenets:

Wide /

Area Network

All iechnical systems will be independent of district office power and telecommunications

Rural TMC Jechnica Architecture

Given the various constraints of operating in a rural environment the D2 Rural TMC was designed with the following tenets: (continued)

All technical system will be independent of

Enterprise IT and HQ services

Rural TMC Jechnica Architecture

Given the various constraints of operating in a rural environment, the D2 Rural TMC was designed with the following tenets: (continued)

All technical system will be independent of

Enterprise T and I Q services

All Department owned communication links designed to 5-9's reliability

Planning and Strategy (Legacy)

Communications Planning

 District 2 has a general plan to experiment coverage of the District's Point-to-Point Microwave System to Mt Top communications sites with strategic vantage points of the State Highway System

ACY)

- Communications Planning
 - District 2 has a general plan to experiment coverage of the District's Point-to-Point Microwave System to Mt Top communications sites with strategic vantage points of the State Highway System

acy)

 District 2 has a general plan Redding area (Shasta Lake East to Pale Cedro

acy)

Communications Strategies

Communications Strategies

 During site construction install the prest reliable, least costly utility service

acy)

- Communications Strategies
 - During site construction install the prest reliable, least costly utility service
 - Upgrade to ISM band microwave a separate project if line-of-site is available

acy)

- Communications Strategies
 - During site construction install the prest reliable, least costly utility service
 - Upgrade to ISM band microwave a separate project if line-of-site is available

ACY)

Upgrade to licensed microwave

- Communications Strategies
 - During site construction install the prest reliable, least costly utility service
 - Upgrade to ISM band microwave as a separate project if line-of-site is available

acy)

- Upgrade to licensed microwave
- Opportunistic upgrades

Recent Changes

Recent Changes

Advancing Technology

Recent Change

Advancing Technology
Caltrans Traffic Operations Statewide Communications Plan – June 2020

Recent Change

Advancing Technology
Caltrans Traffic Operations Statewide
Communications Plan – June 2020
Traffic Operations Division Policy
TOPD 21-10 "TMS Telecommunication Cost Management"
TOPD 22-03 "Statewide TMS B be/bind Plate

and Communication Manage

Recent Change

 Advancing Technology Caltrans Traffic Operations Statewide **Communications Plan – June 2020** Traffic Operations Division Policy TOPD 21-10 "TMS Telecommunication Cost Management" TOPD 22-03 "Statewide TM and Communication Manage Middle Mile Broadband K

de Impact Traffic O Sion Policy our deployment strategy ecommunication Cost wide TMS Broadband Plan and Communication Management" "Districts hould identify their financially St. unconstrained stand maximize the opportunity to build out their broadband infrastructure by including broadband communications in Transportation Management System (TMS) and other projects to the extent possible"

e Impact

Network (MMBN) four deployment strategy rts? First the background

Middle Mass How does

A

A

NS

- <u>AN</u>

e Impact

letwork (MMBN) our deployment strategy ms? First the background

Middle Miese • How doese

A

A

NS

- AN

ge Impact

Middle M

A

AS

N

ZAN

Network (MMBN) our deployment strategy out? First the background

o deploy 10,000 miles of fiber preation within the State Highway served rural communities of CA

ge Impact Middle M Network (MMBN) our deployment strategy ts? First the background 000 miles of fiber within the State Highway DDLC COM R/W to underserved rural communities of CA CA Department-e echnology is the facility owner nering to provide design and Caltrans pa **Construction** suppo = AN

Mountain top CCTVs (one in Construction) – No MMBN access

Tule Lake

National Wildlife Refuge

Lava Beds National Monument Reservoir

Lower rus nath Nat'l Nild fer Rurugs

Meiss Lake

(O

്ര

Siskiyou

0

EORNIA

Cõ o OREGON

nd Plan De

Modoc

0

73 TRINITY MOUNTAIN Shasta National Horr Pond Forest Moon Lassen Shasta Lake Lake Britten Modoc 0 National tiona Forest Engle ake OWB RANGE 8688 ft 7934 ft Shasta Lassen National Forest Eagle Lake Co

e Impact

Network (MMBN)

on unknowns lear and has changed

Middle New York of the second second

A

AD

NY

e Impact

Network (MMBN)

ntained by a 3rd party utility th directly to the D2 TMC, ited to Goldcamp Data

letwork (MMBN)

cated

AS

AS

AN

= AN

Middle M

ntained by a 3rd party utility th directly to the D2 TMC, ited to Goldcamp Data

POP in Redding TMC

Advantages:

Not dependent on a critical service

party to provide a

- Not dependent on a critical service
- Ability to monitor and the beshoot every step of the path (RSL Relay)

Jul 2022

Link Status Hill900->Hub_CentralRedding Last 1 Year(s)

Note:

Shift+Drag to move Graph. Double click to return to normal. Click and drag on graph to zoom. (Horizontal or Vertical)

Apr 2023

Last Hour | Last Day | Last Week | Last Month | Last Year | Date Selector Edit Link | Alt Graph: 1, 2, 3, 4 | Summary | Toggle Table Hill900 - RSL - Calculated RSL -40(dBm) -45(dBm) -50(dBm) 1 . -55(dBm) Jul 2022 Oct 2022 Jan 2023 Apr 2023 Hub Centralredding -40(dBm) - RSL - Calculated RSL -45(dBm) -50(dBm) -55(dBm) .

Oct 2022

Jan 2023

- Not dependent on a party to provide a critical service
- Ability to monitor and the bleshoot every step of the path (RSL Relay)
 - District 2, more retaine than public and invate service providers

- Not dependent on a critical service
- Ability to monitor and the beshoot every step c
 the path (RSL Relay)
 - District 2, more referre than public and referre providence control re-occurring telecomountee

Disadvantages:
Disadvantages:

Capital investment costs can be higher (but not always!)

Disadvantages:

- Capital investment costs can be higher (but not always!)
- As communications section grows, resource, needs increase, but increases increase and the necessarily resource 5

As described earlier, Deprict 2 utilizes the following Department-Ormed communications infrastructure:

As described earlier, Derict 2 utilizes the following Department-onned communications infrastructure:

- Fiber
 Constructed in 2012
 - backbone of in the cral short stops in re
 - ate communication
 - Children and the state point to the state of the state of
 - microwave system to backha

As described earlier, Derrict 2 utilizes the following Department-owned communications infrastructure:

Fiber
 Point-to-Point Microvace
 Fischel deployed 2006
 Else has expanded to p

- dente

Connecting domens of

AC view high throu

Why does District 2 use Microwave?

Why does District 2 use Microwave?

<u>Advantages</u>

igh throughp

 More reliable than sural telcos
 More reliable during a crisis than the PSTN and the cellular system

In general, les cost 1/10 the cost!

tower (for point-to-point s topologies)

Physical Imitation o

limitations

Internal bureaucratic processes take time to get a project through

site requirements

Lack of ust tutional knowledge

Why will District 2 continue to use Microwave after the MMBN deployment?

- Communications Planning
 - District 2 has a general plan to experiment coverage of the District's Point-to-Point Microwave System to Mt Top communications sites with strategic vantage points of the State Highway System

acy)

 District 2 has a general plan Redding area (Shasta Lake East to Pale Cedro

- Communications Planning
 - Reduce the District's overall monthing for the second secon
 - Continue expanding coverage of the District's Point-to-Point Microwave System

dated)

- Expand fiber in the Redding area to and SR273 redundant paths
- Maintain a District wide F plan
 - the microwave system as a low-cost reliable redundant

- Communications Strategies
 - During site construction install the prest reliable, least costly utility service
 - Upgrade to ISM band microwave as a separate project if line-of-site is available

acy)

- Upgrade to licensed microwave
- Opportunistic upgrades

- Communications Strategies
 - During site construction, install last connection to MMBN or install the highest reliable, least costly utility service
 - Upgrade to ISM band microwave as a separate project if line-of-site is available

dated)

- Upgrade to licensed microway
- Scope communications considered and consis considered and considered and considered and considered and con
 - Carutatue to utilize hybrid com backhaul opportunities

Opportunistic upgrades (as

Let's highlight two recent microwave projects Tuscan Buttes Mt Bradley

1

Proj

6-j

Questions?

